180 research outputs found

    A continuous/discontinuous Galerkin formulation for a strain gradient-dependent damage model: 2D results

    Get PDF
    The numerical solution of strain gradient-dependent continuum problems has been hindered by continuity demands on the basis functions. The presence of terms in constitutive models which involve gradients of the strain eld means that the C0C^0 continuity of standard nite element shape functions is insu cient. In this work, a continuous/discontinuous Galerkin formulation is developed to solve a strain gradient-dependent damage problem in a rigorous manner. Potential discontinuities in the strain field across element boundaries are incorporated in the weak form of the governing equations. The performance of the formulation is tested in one dimension for various interpolations, which provides guidance for two-dimensional simulations

    Elastica-based strain energy functions for soft biological tissue

    Full text link
    Continuum strain energy functions are developed for soft biological tissues that possess long fibrillar components. The treatment is based on the model of an elastica, which is our fine scale model, and is homogenized in a simple fashion to obtain a continuum strain energy function. Notably, we avoid solving the full fourth-order, nonlinear, partial differential equation for the elastica by resorting to other assumptions, kinematic and energetic, on the response of the individual, elastica-like fibrils.Comment: To appear in J. Mech. Phys. Solid

    A continuum treatment of growth in biological tissue: The coupling of mass transport and mechanics

    Full text link
    Growth (and resorption) of biological tissue is formulated in the continuum setting. The treatment is macroscopic, rather than cellular or sub-cellular. Certain assumptions that are central to classical continuum mechanics are revisited, the theory is reformulated, and consequences for balance laws and constitutive relations are deduced. The treatment incorporates multiple species. Sources and fluxes of mass, and terms for momentum and energy transfer between species are introduced to enhance the classical balance laws. The transported species include: (\romannumeral 1) a fluid phase, and (\romannumeral 2) the precursors and byproducts of the reactions that create and break down tissue. A notable feature is that the full extent of coupling between mass transport and mechanics emerges from the thermodynamics. Contributions to fluxes from the concentration gradient, chemical potential gradient, stress gradient, body force and inertia have not emerged in a unified fashion from previous formulations of the problem. The present work demonstrates these effects via a physically-consistent treatment. The presence of multiple, interacting species requires that the formulation be consistent with mixture theory. This requirement has far-reaching consequences. A preliminary numerical example is included to demonstrate some aspects of the coupled formulation.Comment: 29 pages, 11 figures, accepted for publication in Journal of the Mechanics and Physics of Solids. See journal for final versio
    corecore